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Energy-efficient computing hardware is highly demanded in future information societies. Here I review recent progress of spintronics 

research for use in unconventional computing hardware that are promising for energy-efficient computation. Spintronics devices have 

attractive unexplored attributes such as probabilistic or analog functionalities. I first show a probabilistic bit and computer made of a 

stochastic magnetic tunnel junction device. A constructed rudimentary probabilistic computer can efficiently address combinatorial 

optimization, machine learning, quantum simulation, and Bayesian inference that conventional computers require large energy to 

execute. I also present a three-terminal analog spin-orbit torque driven device that can store the weight of neural networks and hence 

function as an artificial synapse. Proof-of-concept demonstration of reservoir computing is described, where the analog spin-orbit torque 

devices are used to store the weight of the output layer. 
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onventional computers, based on a principle of Turing 

machine, von Neumann architecture, and complementary 

metal-oxide-semiconductor (CMOS) circuits, have evolved 

into sophisticated machines for half a century and are an 

indispensable platform of today’s information societies. 

Nevertheless, there remain several computational tasks 

categorized into difficult classes of problem, that the classical 

computers are hard to address. This leads to an increasing 

interest in unconventional computing paradigms, in which one 

employs hardware with new operation principles, architecture, 

circuits and devices that are, for example, inspired by 

information processing in brain or physical phenomena [1-5]. 

This demand is of particular importance for edge devices in the 

coming internet-of-things (IoT) era, because real-time 

processing with limited energy is a critical requirement in IoT 

applications. 

Spintronics is a promising field for the unconventional 

computing paradigm. In spintronics, one can design a device to 

store the information in a nonvolatile manner and yet can 

virtually unlimitedly switch it in a nano or subnano-second 

timescale. In addition, spintronics devices have compatibility 

with the integration process and operation voltage of standard 

CMOS circuits. These properties show promise for being a key 

building block in low-power integrated circuits [6]. Moreover, 

spintronics devices possess various intriguing attributes such as 

stochasticity and analog-memory functionality, and effective 

utilization of these properties is expected to pave the pathway 

toward the unconventional computing paradigm [7]. In this talk, 

I describe the following two approaches for the unconventional 

computing hardware based on spintronics devices, which are 

promising for energy-efficient computing hardware.  

I first show a probabilistic bit and computer made of a 

stochastic magnetic tunnel junction device. A constructed 

rudimentary probabilistic computer can efficiently address 

combinatorial optimization [8], machine learning [9], quantum 

simulation [10], and Bayesian inference [11]. I delve into the 

physics of the stochastic magnetic tunnel junction elucidating 

the time-domain and time-averaged properties [12-17]. I also 

discuss the advanced design of the s-MTJs [18-21] tailored for 

reliable, large-scale probabilistic computers.  

Second, I present a three-terminal analog spin-orbit torque 

driven device that can store the weight of neural networks and 

hence function as an artificial synapse. I discuss material and 

device technologies to realize artificial synapses made of 

antiferromagnet-ferromagnet bilayer system that is operated by 

the spin-orbit torque [22-25]. Proof-of-concept demonstration 

of reservoir computing is described, where the analog spin-orbit 

torque devices are used to store the weight of the output layer 

[26]. 

 

These studies on probabilistic computers and stochastic 

magnetic tunnel junctions are carried out in collaboration with 

H. Ohno, S. Kanai, W. A. Borders, K. Hayakawa, K. Kobayashi, 

R. Ota, H. Kaneko, S. Datta, K. Y. Camsari, whereas those on 

analog spin-orbit torque devices and reservoir computers are 

carried out in collaboration with H. Ohno, S. Kanai, A. 

Lagarrigue, K. V. D. Zoysa, S. Varaganti, S. Moriya, S. Sato, Y. 

Horio. The studies were partly supported by JST-CREST 

JPMJCR19K3, JST-AdCORP JPMJKB2305, JST-ASPIRE 

JPMJAP2322, MEXT X-NICS JPJ011438, JSPS Kakenhi 

(24H00039 and 24H02235) and RIEC Cooperative Research 

Projects. 
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