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To address the critical need for efficient, biologically-inspired neuromorphic chip exhibiting flexible learning and robustness against 

noise and catastrophic forgetting, We present a neuromorphic computing engine that leverages the intrinsic stochasticity and fast 

switching characteristics of spin-orbit torque magnetic tunnel junctions (SOT-MTJs). Its architecture innovatively integrates multi-port 

SOT switching to implement a 9-type spike-timing-dependent plasticity (STDP) rule, enhanced by meta-learning, while achieving 

excitation-inhibition balance of the spiking neural networks (SNNs) via sparsity-aware input encoding. This integrated approach 

effectively realizes key functions of flexible synaptic plasticity and selective neuronal activation.  The results demonstrate over 96% 

classification accuracy on both MNIST and TIDigits datasets. Crucially, it showcases robust continuous learning capabilities by 

sequentially training all 10 MNIST classes in a single pass, thereby substantially reducing catastrophic forgetting with minimal 

computational overhead. This work demonstrates that MTJs can enable on-device SNNs, paving the way for the development of scalable 

and energy-efficient neuromorphic computing chips. 
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I. INTRODUCTION 

he remarkable capability of the human brain is to 

continuously learn from dynamic environments, where 

different regions such as the occipital and temporal lobes 

govern distinct cognitive modalities and are modulated by 

various neurotransmitters (Figure 1a). Excitatory and inhibitory 

neurons coexist within each region, with inhibitory neurons 

blocking neurotransmission to help maintain network stability. 

Higher-order learning is further regulated by metaplasticity, a 

neuromodulation-driven mechanism that dynamically tunes the 

threshold and polarity of synaptic plasticity in response to 

environmental context. Key among these are two mechanisms: 

neuronal selection, which allows the brain to focus on relevant 

information, and synaptic modulation, which underpins 

learning and memory (Figure 1b). Specifically, neuronal 

selection are achieved through a delicate Excitation-Inhibition 

(E-I) balance, which dictates whether neurons fire intensively, 

sparsely, or remain silent in response to inputs (Figure 1c) [1]. 

On the other hand, neuromodulatory mechanisms—particularly 

those involving dopamine—adjust synaptic efficacy beyond 

classical Hebbian rules [2]. These effects, known as 

metaplasticity, regulate the amplitude, polarity, and temporal 

dynamics of long-term potentiation (LTP) and depression 

(LTD), which can manifest as 9 distinct forms of STDP (Figure 

1d) [3]. 

However, existing neuromorphic hardware often supports 

only simplified functionalities, hindering the realization of 

complex learning mechanisms on energy-efficient chips [4]. To 

overcome this limitation, we introduce a novel neuromorphic 

engine (Figure 1(e)) leveraging the intrinsic stochasticity and 

rapid switching characteristics of SOT-MTJs [5]. This engine 

employs multi-port SOT switching to directly implement both 

neuronal selection and synaptic modulation within on-device 

SNNs for learning via weight updates and controlling neuron 

spiking rates. 

 
Fig. 1. Biologically inspired architecture and its SOT-MTJ implementation. (a) 

Brain regions and fundamental neural components (excitatory/silent neurons, 

synapses, metaplasticity). (b) Schematic of selective information processing in 

a SNN, where input stimuli (e.g., images, audio) are handled by neuron 

populations based on neuronal selection and synaptic modulation. (c)  Neuronal 

selection via E-I balance, controlling spike rates. (d) Synaptic modulation is 

governed by dopamine-dependent metaplasticity, enabling dynamic 

combinations of LTP and LTD and realizing nine distinct STDP learning rules. 

(e) Architecture of the proposed neuromorphic engine using SOT-MTJs, 

integrating neuronal selection and synaptic modulation blocks within a 

neuromorphic array for input processing, learning, and inference. 

T 



II. METHODS 

We fabricated an in-plane type-Y SOT-MTJ pair, whose 

multilayer stack and device layout are illustrated in Fig. 2a. The 

four-terminal structure features a heavy-metal cross acting as 

the SOT current channels, with two MTJs patterned on its 

orthogonal arms, yielding a 90°tilt between their easy axes. 

Current-induced switching was examined with the circuit 

shown in Fig. 2b. Applying current along the X-direction 

induces synchronous switching of the two MTJs, whereas Y-

direction excitation causes them to switch anti-synchronously. 

This inherent capability to toggle between correlated and anti-

correlated states provides the hardware basis for the synaptic 

functions discussed subsequently. 

Given that SOT devices offer highly reproducible, pulse-

controlled switching, we focused on their single-pulse response 

rather than pursuing conventional multi-level conductances. 

Using the previously determined threshold voltages as a guide, 

rectangular voltage pulses of varying amplitude were applied to 

the SOT-MTJs at room temperature without external magnetic 

field. For the measurements shown in Fig. 2c, the pulse 

amplitude was swept from –3.94 V to –3.66 V in 0.02 V steps. 

The switching probability was calculated as 𝑃𝑆𝑊 = 𝑁𝑓𝑙𝑖𝑝/

𝑁𝑡𝑜𝑡and plotted against pulse amplitude, where each probability 

was measured 50 times. Therefore, we could obtain sigmoid fits 

of the switching probability curve under different SOT currents. 

Repeating the protocol for the opposite polarity and for the 

left/right MTJ produces four characteristic curves (AP to P and 

P to AP for both junctions), which form the quantitative basis 

for the pulse-based synaptic modes. 

 
Fig. 2. Structure, measurement set-up, and single-pulse switching statistics of 

the SOT-MTJ. (a) Multilayer stack and geometry of the four-terminal device. 

(b) Electrical measurement setup used for SOT switching. (c) Probability 

switching characterization for the left MTJ under –Y excitation. 

III. RESULT 

Exploiting the direction-dependent switching of the two 

MTJs—synchronous under ±Y excitation and anti-synchronous 

under ±X excitation—the  SOT-MTJ pair implements 9-type 

STDP rules. A local selector chooses which junction is 

monitored, while the sign of its conductance change, ∆𝐺 , 

defines long-term potentiation (LTP, ∆𝐺 > 0 , ∆𝑊 = +1 ) or 

depression (LTD, ∆𝐺 < 0,  ∆𝑊 = −1 ); the weight remains 

unchanged when no switch occurs.  

For instance, when a pre-synaptic pulse(−𝑌) followed by  a 

post-synaptic pulse(+𝑌) the left MTJ switches from AP to P, 

generating a LTP mode (∆𝑡 > 0 ); reversing the Y direction 

order, it produces a LTD mode (∆𝑡 < 0 ). Selecting the right 

MTJ could invert these updates because its SOT Y-polarity is 

opposite. Currents along ±𝑋 drive the two MTJs synchronously, 

giving pure LTD (DD), no change (00) or pure LTP (PP), 

irrespective of ∆𝑡. Formally, the update obeys ∆𝑊 = 𝑓𝑙𝑜𝑐𝑎𝑙 ×
𝐿𝑇𝑃/𝐿𝑇𝐷.  

Neuronal selection is implemented by the same stochastic 

response. A sigmoid switching curve 𝐺(∙) of the SOT-MTJ pair 

is used to generate a Mask. When the device is in the AP state, 

Mask ≠ 0 and the leaky-integrate-and-fire (LIF) neuron behaves 

normally (“Fire”); when it is in the P state, Mask = 0 and the 

neuron is silenced even if its membrane potential reaches 

threshold (“don’t Fire”). 

We simulated these synaptic-modulation and neuron-

selection schemes in a pulse-based spiking neural network. The 

resulting accuracy reached 96.51 % on MNIST and 96.54 % on 

TIDigits. Furthermore, the architecture demonstrates effective 

continuous learning capability by sequentially training on all 10 

MNIST classes without iteration, significantly reducing 

catastrophic forgetting while maintaining low computational 

overhead. 
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