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Physical neural networks (PNN) using physical materials and devices to mimic synapses and neurons offer an energy-efficient way to 

implement artificial neural networks. Yet, training PNN is difficult and heavily relies on external computing resources. An emerging 

concept, “physical self-learning,” uses intrinsic physical parameters as trainable weights. Here, a real spintronic system mimicking 

Hopfield neural networks (HNN) is demonstrated, where unsupervised learning is intrinsically performed via the evolution of the 

physical process. Using a magnetic texture–defined conductance matrix as trainable weights, it is shown that under external voltage 

inputs, the conductance matrix naturally evolves and adapts Oja’s learning algorithm in a gradient descent manner. The self-learning 

HNN is scalable and can achieve associative memories on patterns with high similarities. Fast spin dynamics and reconfigurability of 

magnetic textures offer a platform toward efficient autonomous training directly in materials. 
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I. INTRODUCTION 

achine learning relies increasingly on energy-intensive 

artificial neural networks (ANNs). Physical neural 

networks (PNNs) emulate neural function using real 

materials—spintronics, memristors, optics, and more—to 

achieve energy efficiency beyond silicon processors. However, 

most experimental PNNs, especially for training, depend 

extensively on external computers, limiting their practical 

advantage. 

A central challenge is realizing physical self-learning: 

mapping trainable weights directly to intrinsic, tunable material 

parameters, so training occurs through natural evolution 

following physical laws—mimicking biological learning. If 

such evolution adapts modern learning rules (e.g., gradient 

descent), autonomous material-based training becomes possible. 

The Hopfield neural network (HNN) is a classic model for 

associative memory. It is widely implemented in various 

physical forms, but typically uses only simple Hebbian/outer-

product rules, limiting capacity to highly orthogonal patterns 

and requiring off-chip weight calculation. 

This work reports a spintronic realization of a magnetic 

HNN with intrinsic gradient descent. Synaptic weights are 

mapped to a conductance matrix defined by the configuration 

of magnetic textures in a Permalloy (Py) film. Voltage training 

pulses applied to gold electrodes induce Oersted fields, 

reshaping these textures and evolving the network according to 

Oja’s rule—a more powerful, convergent learning strategy—

entirely through physical dynamics. 

 

II. DEVICE AND PHYSICAL LEARNING MECHANISM 

Device Architecture and Measurement. The core device 

consists of three layers: a bottom Py (Fe80Ni20) film, 

insulating Al₂O₃, and top Au (gold) patterned into four 

electrodes (neurons). Voltage pulses applied to Au encode 

binary input patterns; these pulses generate in-plane currents 

and corresponding Oersted fields, modulating local 

magnetization in the underlying Py. 

 

Conductance between each node pair ( 𝐺𝑖𝑗 ) forms a 

symmetric matrix mapped to HNN weights. The evolution of 

Gij under pulse input is tracked via the anisotropic 

magnetoresistance (AMR) effect: the local resistance of Py 

depends on the angle between electrical current and 

magnetization, measurable with small probe currents. 

Intrinsic Gradient Descent Learning. Upon repeated voltage 

pulse training, the conductance matrix elements 𝐺𝑖𝑗 evolve in a 

manner described by: 

 

𝐺𝑖𝑗(𝑡) − 𝐺𝑖𝑗(𝑡 − 1) = 𝜂 [𝑉𝑖
Au𝑉𝑗

Au − 2𝛼𝑖𝑗 (𝐺𝑖𝑗(𝑡 − 1) − 𝐺𝑖𝑗
avg

)],                   

(1) 

where 𝜂 is the evolution speed, 𝛼𝑖𝑗 an effective learning rate 

determined by voltage differences, and 𝐺𝑖𝑗
avg

  a constraint 

average. 

This evolution is mathematically equivalent to Oja’s rule, a 

well-known modification to Hebbian learning that ensures 

weight normalization and stability. The key physical insight: the 

network’s energy minimization under external driving directly 

implements gradient descent on a cost function, with purely 

local updates and no need for software supervision. 
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Figure 1 Concept of physical self-learning . a) Biological neural 

network learns by itself where activated neurons intend to strengthen 

their connection. b) Physical Neural Networks (PNNs) whose 

internal learning parameters 𝑤𝑖𝑗 are determined via external 

computation and updated in the physical system. c) PNNs with self-

learning capability, whose learning parameters are determined and 

updated in an autonomous way according to inherent physical 

dynamics without interference of external computation. 



 

III. ASSOCIATIVE MEMORY PERFORMANCE & 

SCALABILITY 

Experimental Demonstration and Inference. The 4-node 

system enables seven independent binary patterns. For each, 

training proceeds via pulse input; the conductance matrix 

converges, mapping the network attractor to the desired pattern 

as confirmed by energy minimization and recurrent inference, 

even with noisy/distorted inputs. The trained device robustly 

recalls correct patterns via iterative updates, matching Hopfield 

energy criteria. 

Scalability and Advanced Application. Micromagnetic 

simulation of a scaled-up device (e.g., 35 nodes) shows robust 

associative memory for complex, low-orthogonality patterns 

(e.g., recognition of similar letters), achieving up to 97% recall 

accuracy—substantially outperforming the standard outer-

product rule (approx. 33%). The self-learning approach is 

inherently parallel: multi-node training occurs simultaneously 

as magnetic textures evolve, offering fast operation limited only 

by the nanosecond-scale spin dynamics. 

Additionally, the programmable magnetic network supports 

Boolean logic functions (e.g., AND, OR, NAND, NOR) with 

stability and reconfigurability—key steps towards 

neuromorphic computing. 

IV. DISCUSSION AND CONCLUSION 

This demonstration establishes that tunable magnetic 

textures in spintronic devices can implement powerful, 

autonomous training rules for neural networks, with: 

1. nanosecond-scale, parallel, and energy-efficient training; 

2. robust, nonvolatile storage and reconfigurability; 

3. effective recall of similar patterns exceeding previous 

physical HNNs. 

 

Future improvements include signal amplification using 

giant magnetoresistance (GMR) and extension to more 

complex networks (e.g., deep networks, Boltzmann machines), 

potentially realizing fully neuromorphic, material-driven 

learning hardware. 
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Figure 2 Intrinsic gradient descent learning. a) Evolution of 

conductance matrix 𝐺𝑖𝑗 when the voltage pattern is switched from 

initial “+ – + –” to “+ + – –” under “+ + – –” voltage pulses in the 

Au layer. The experiment, simulation and theory curves are plotted 

respectively where the matrix evolution is equivalent to the Oja’s 

learning rule for unsupervised learning. b) Snapshots of 

corresponding evolution of spin textures from simulation. 

Figure 3 Examination of the magnetic HNN. a) The effective energy 

diagram (left) and corresponding current and spin texture distribution 

(right) for the trained pattern “+ + – –”. The effective energy E is 

minimal for the trail state “+ + – –” or equivalent “– – + +” as 

marked by red dashed box. b)-g) Results for other six trained patterns. 

h) Associated memory. When a distorted letter is fed to the network, 

the correct letter can be recalled during inference. Four letters (i, n, q, 

c) are demonstrated respectively. 


