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As Moore’s law reaches its practical limits and computing paradigms become increasingly complex, there is a growing demand for 

innovative device technologies. However, completely replacing complementary metal-oxide-semiconductor (CMOS) technology is not 

considered feasible in the foreseeable future. In this paper, we present how a promising emerging technology, spintronic devices, can be 

integrated with CMOS to function as foundational building blocks for scalable memory and computing systems. 
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I. INTRODUCTION 

ecent advancements in intelligent systems have 

transformed the computing paradigm by reshaping both 

computational architectures and resource demands. The 

traditional Von Neumann architecture and CMOS technology, 

which underpinned information processing during the 20th 

century, now face significant challenges such as the memory 

wall and intrinsic physical limitations. These issues have 

spurred interest in novel memory technologies and alternative 

computing paradigms that address modern system demands. 

Emerging memory technologies promise to overcome the 

limitations of conventional architectures by addressing 

performance bottlenecks and reducing latency. New memory 

modalities—including phase-change memory, resistive 

random-access memory (RAM), and magnetic RAM—offer 

substantially lower latency and nonvolatility compared to 

traditional DRAM, thereby reducing CPU idle times and 

enhancing throughput. Advances in non-volatile memory 

improve energy efficiency by lowering power consumption for 

data retention and enable integration of persistent storage 

within computing systems. Moreover, these technologies 

support high-bandwidth memory architectures that boost data 

transfer rates and parallelism, facilitating rapid bulk data 

movement and improved processing efficiency. Collectively, 

such innovations provide scalable, high-performance solutions 

tailored to the needs of modern applications and big data 

analytics. 

Alternative computing paradigms, including neuromorphic, 

probabilistic, and quantum computing, also rely on emerging 

device technologies for enhanced efficiency. Notably, 

spintronic devices—exploiting electron spin in addition to 

charge—offer novel functionalities and dynamic behaviors. In 

the past two decades, spintronic mechanisms have evolved from 

spin-transfer torque (STT) to spin–orbit torque (SOT) and 

voltage-controlled magnetic anisotropy (VCMA). The 

fabrication of these devices now incorporates advanced 

materials such as antiferromagnetic, topological, and two-

dimensional (2D) substances. Research into these new physical 

phenomena and device architectures is continuously driving 

improvements in overall computing performance [1]. 

Integrating spintronic devices into large-scale architectures 

necessitates compatibility with CMOS technology[2]. 

Conventional CMOS logic relies on integrating fundamental 

cells such as logic gates, and these principles remain vital as 

emerging technologies develop. Novel devices and mechanisms 

must form foundational cells that interface seamlessly with 

CMOS or similar scalable architectures. To this end, spintronic 

foundational cells (SFCs) are designed to integrate key 

components—such as memory or crossbar arrays and 

probabilistic bits—with CMOS peripheral circuits for device 

control. Digital interfaces in these cells facilitate interaction 

among spintronic modules and existing digital circuits (Fig. 1).  

In this work, we present design examples of spintronic 

foundational cells specifically tailored for scalable memory and 

computing systems, highlighting their potential to meet the 

challenges posed by next-generation intelligent systems. 

II. MEMORY FOUNDATION CELL WITH QUANTUM MATERIALS 

The schematic of foundation cell of SOT-MRAM is shown 

in Fig. 2a, in which the memory unit is the SOT-magnetic tunnel 

junction (MTJ) (Fig. 2b). To improve energy efficiency of SOT-

MRAM, promising routes include increasing SOT efficiency 

and removing external field [3]. We report an all–van der Waals 

heterostructure integrating a type‐II Weyl semimetal (Fig. 2c), 

TaIrTe₄, with an above‐room-temperature ferromagnet, 

Fe₃GaTe₂, that enables robust field–free magnetization 

switching via an unconventional SOT [4]. The reduced crystal 

symmetry at the TaIrTe₄ surface produces a significant out–of–

plane spin polarization and thus induces energy-efficient field-

free switching when current is applied along its a–axis (Fig. 2d). 

The field-free switching polarity maintains until an in–plane 
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Fig. 1. Schematic diagram of a spintronic foundational cell. The scalable 
system consists of multiple spintronic foundational cells of various types, 

which are interconnected via digital interfaces. 



magnetic field of 252 mT is applied. Macrospin simulations 

incorporating thermal fluctuations corroborate that larger spin 

canting angles reduce the required switching currents and 

improve stability. This robust, energy–efficient switching and 

high magnetic field resilience highlight the TaIrTe₄/Fe₃GaTe₂ 

heterostructure’s potential for non–volatile memory and 

scalable spintronic applications. 

III. ANALOG IN MEMORY COMPUTING FOUNDATION CELLS 

Memristors have emerged as promising devices for efficient 

multiply-accumulate (MAC) operations in crossbar array-based 

foundation cells (Fig. 3a)—a capability that is critical for 

advancing analog in-memory computing (AiMC). However, 

device and circuit variations inherent in memristors can 

compromise the accuracy of analog computations. To construct 

a scalable AiMC system, it is essential to address and leverage 

these variations. Traditionally, on-chip training has been used 

to mitigate such issues; however, this approach is challenging 

for memristors due to their limited endurance. 

In our recent study[5], [6], we introduce a hardware–software 

co-design framework that employs MTJ-based off-chip 

calibration for AiMC, achieving software-level accuracy 

without the overhead associated with expensive on-chip 

training. Experimentally, our results demonstrate that MTJ 

devices exhibit ultralow cycle-to-cycle variations, a finding 

validated through tests on over one million mass-produced 

devices. On the software side, the high degree of hardware 

uniformity enables us to develop an off-chip training strategy 

that fine-tunes deep neural network parameters, resulting in 

highly precise AiMC inference. This approach allows the 

system to be scaled by replicating multiple identical AiMC 

spintronic foundation cells, without being limited by device 

variations. 

Furthermore, implementing AiMC under cryogenic 

temperatures can enhance performance and energy efficiency in 

computation-intensive environments, particularly in 

applications such as quantum control[7]. Magnetic topological 

insulators (MTIs) offer a promising path toward reliable AiMC 

by facilitating the summation of the anomalous Hall current[8], 

enabled by their large anomalous Hall resistance range and high 

noise-to-signal ratio (Fig. 3b). 

In addition to stable memory states, probabilistic bits (p-bits) 

can be constructed using MTJs [9]. Conventionally, the 

generation and computation of random bits are separated by 

sample and transfer operations between analog and digital 

systems. We propose to use the dual feature – stable data bit and 

p-bit – of MTJs to realize an in-memory probabilistic 

computing scheme (Fig. 3c) [10]. We use probabilistic 

differential pairs to construct a Monte Carlo dropconnect 

Bayesian neural network to directly calculate the stochastic 

differential equations for image generation. 
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Fig. 2. (a) Schematic of the foundation cell of SOT-MRAM. (b) Schematic of the 

memory unit of SOT-MTJ. (c) Schematic of TaIrTe₄ and Fe₃GaTe₂. (d) Field-free 

SOT switching when the current is applied along the a-axis of TaIrTe₄.  
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Fig. 3. (a) Schematic of an AiMC crossbar array. (b) Schematic of two Hall bar 

devices for realizing Hall current summation. (c) Schematics of (i) data bit, p-

bit and (ii) their differential pair based on VCMA-MTJs. (iii) Possible outputs 
of the probabilistic differential pair for weight and dropconnect. (a)  
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