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Integrating physical dynamics with computational models is gaining traction for boosting neural network efficiency. Physical reservoir 

computing leverages the intrinsic dynamics of materials for temporal processing but faces challenges in constructing efficient reservoirs. 

Here, we move beyond delay-based designs by harnessing spatiotemporal transformations in all-electric, non-volatile spintronic devices. 

By triggering devices with varied pulse widths, we emulate neurons and build a compact reservoir with strong non-linearity and dense 

interconnectivity. Despite using only 14 physical nodes, our system achieves a 0.903 recognition rate on handwritten digits and a 0.076 

error rate in Mackey-Glass prediction, validated on a proof-of-concept PCB.  

 
Index Terms—Reservoir Computing, Nonvolatile Memory, Hall Effect Devices, Spin Valves. 

 

I. INTRODUCTION  

The recurrent neural network (RNN) is a special framework 

of artificial intelligence (AI) designed for temporal data 

processing, which has broad applications in physics, biology 

and finance. RNN suffers from the haunting problem of 

exploding (or vanishing) gradient during training, to which the 

conventional approaches, such as long short-term memory and 

backpropagation through time, remain inefficient. Reservoir 

computing (RC) emerges as an improved RNN paradigm[1]. It 

is featured by an input-driven reservoir of high-dimensional 

data space and a memoryless readout layer. Only the readout 

layer is trained, making RC particularly suitable for the edge AI, 

where resources are constrained. Recent advances leverage 

physical processes to implement RC with analog responses of 

hardware – known as physical RC (PRC) – including 

mechanical, photonic and electronic systems[2, 3]. However, 

conventional PRC approaches rely on delay-based volatile 

reservoirs, enforcing a pulse-train-like input stream with a 

narrow bandwidth, limiting AI task performance. Here, for the 

first time, we provide an approach to construct non-volatile 

PRC using all-electric spintronic devices, completely 

separating input timescale from task timescale[4]. Our physical 

reservoir is realized on a customized printed circuit board (PCB) 

to mimic on-chip training. It exhibits excellent performance in 

benchmark classification and prediction tasks while lowering 

energy consumption by 99.6% compared to software 

implementation. 

II. METHODS AND APPROACHES 

A. Fading Memoroy 

A mathematical precondition of reservoir computing is fading 

memory, which requires the future readout of reservoir to 

depend on past inputs and this dependence weakens over time. 

We demonstrate this property with Hall bars made of 

perpendicularly magnetized ferromagnetic layer, which can be 

switched by SOT without external magnetic field[5]. Fig. 1(a) 

shows SOT-induced Hall resistance (RH) changes when 6 

voltage pulse trains are applied. Note that only the third pulse 

(Np = 3) has a different pulse amplitude (Vp) and the remaining 

Vp are the same for each pulse across the 6 trains. Clearly, the 

RH response begins to diverge at Np = 3 and eventually converge 

at Np = 7, thus phenomenologically showing fading memory. 

We attribute this behaviour to the path dependence of domain 

evolution in magnetic hysteresis. That is, as long as the 

magnetization is not fully switched, its future trajectory 

depends on both the history of its past states and the sequence 

of electrical inputs.  

 
Fig. 1. Fading memory and non-linearity. (a) Variation of Hall resistance by 6 

pulse trains with a different pulse amplitude only at the 3rd pulse. (b) 

Dependence of domain wall motion (DWM) per pulse on pulse width (p). 

B. Non-linearity 

 A working reservoir also requires non-linear dynamics. We 

study the SOT-driven domain evolution in a 5-µm microstrip 

using magneto-optic Kerr effect (MOKE) microscopy. The 

initial state is created using the same preset field (Hpre) and 

voltage (Vpre) for measurement. Then we count the total number 

of a fixed voltage pulse required to switch all +Mz domains to 

−Mz. The extracted average domain wall motion (DWM) per 

pulse is shown in Fig. 1(b), which is unambiguously non-linear 

in different pulse widths (p). Since RH is proportional to ±Mz, 

we expect RH-p to be non-linear as well. 

C. Network and circuits 

The physical reservoir is constructed in a three-step process 

as illustrated in Fig. 2(a). First, the input un is converted to a 

pulse train of fixed amplitude with the magnitude of un linearly 

mapped to p. Second, the same un is mapped to different p 

intervals – defined as the dynamic range (DR) – to generate 

distinct neurons. Finally, multiple neuron responses are stacked 

to generate a high-dimensional reservoir matrix X, followed by 

a standard readout using ridge regression (Wout is output weight 

matrix). We develop peripheral circuit on a customized PCB to 

support parallel processing. In Fig. 2(b), a total of 14 Hall bars 

mailto:zhou_jing@imre.a-star.edu.sg
mailto:yanxiaobing@ime.ac.cn


– as devices under test (DUT) – of highly homogeneous device 

properties are connected such that different neurons can be 

generated simultaneously, ensuring a high processing speed. 

The PCB is connected to a computer vias the USB port, and 

Python is used to run training algorithm and process data. 

 
Fig. 2. Reservoir structure. (a) Construction of a physical reservoir from analog 

responses of Hall bars. (b) Customized PCB. 

III. PERFORMANCE 

A. Classification 

We first test our approach with a benchmark AI task – MNIST 

written digit recognition. We use the first 20,000 training 

samples from the database as our data pool then perform 10-

fold cross validation. Fig. 3(a) shows the confusion matrix of a 

single trial with 20000 samples (Ns = 20k), achieving a high 

testing accuracy (Atest) of 0.903. Notably, our reservoir is 

making human-like mistakes since it confuses ‘5’ with ‘3’ and 

‘9’ with ‘4’. In Fig. 3(b), when we gradually increase the sample 

population, the training accuracy (Atrain) decreases but Atest 

increases. This is because the reservoir can capture the features 

of a small dataset, but a sufficiently big dataset is required for 

generalization. The best performance achieved at Ns = 20000 

are Atrain = 0.916±0.001 and Atest = 0.880±0.001. 

 
Fig. 3.  Written digit classification. (a) Confusion matrix of a single trial. (b) 

Ttraining (Atrain) and testing accuracy (Atest) from 10-fold cross validation. 

B. Prediction 

 
Fig. 4. Mackey-Glass chaotic time series prediction. 

We also performed Mackey-Glass chaotic time series 

prediction, which is a specific benchmark task for RNN. We 

flush the first 100 data points and train the next 1000 data points 

to predict the 400 points after. Fig. 4 shows the effect of 

increasing the number of neurons (NVN) on reservoir 

performance. When NVN = 1, the prediction only captures the 

major frequency of the data, producing large discrepancies and 

phase difference. As NVN increases, the discrepancies between 

prediction and target rapidly decreases, eventually producing 

highly superimposed traces at NVN = 57. The normalized root 

mean square error achieved is 0.076, which is among the lowest. 

C. Evaluation 

We evaluate our physical reservoir by benchmarking its 

energy consumption against software implementation of RC in 

Table I. Our systems has a 99.6% and 94.8% of energy saving 

compared with a CPU implementation using state-of-the-art 

echo state network and feed forward neural network (FNN), 

respectively. We attribute this to the much less matrix 

multiplication in our system and operating energy of devices. 
TABLE I. COMPARISON OF RC 

Method Network Energy/sample Energy/task 

Spintronic 

memristor + 

CPU 

RC 

Device:1.16 µJ 

CPU: 0.212 mJ 

Total: 0.213 mJ 

Device: 23.1 mJ 

CPU: 4.25 J 

Total: 4.27 J 

CPU RC 51.0 mJ 1.02 kJ 

CPU FNN 4.07 mJ 285 J 

D. Scaling 

We have successfully integrated the field-free strategy in our 

Hall bar with SOT-MTJ, which has a cell diameter of 240 nm, 

an endurance larger than 1012 and 100% switching probability 

at 10 ns[6]. The proposed domain-based reservoir construction 

strategy can be adapted to MTJ arrays where individual MTJ – 

being single-domain – switches on a probabilistic basis. The 

collective readout of MTJ arrays will be used in the place of RH. 

IV. CONCLUSION 

We have demonstrated a non-volatile physical reservoir 

using non-linear dynamics of magnetic domains. The proposed 

method shows excellent AI task performance, and is scalable 

and adaptable to other nonvolatile memristors. 
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