Noise-Aware Training of Dynamical Physical Neural Networks of
Spintronic Nanodevices
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Spintronic nano-devices hold significant promise for energy-efficient neuromorphic computing, thanks to their non-volatility,
efficient control methods, and complex non-linear dynamics. However, their inherent noise and stochasticity can often hinder
performance and necessitate off-chip training. This talk introduces a framework for constructing dynamical physical neural networks
(PNNs) from spintronic nano-devices, specifically for temporal tasks, using differentiable digital twins. By incorporating noise
directly into the training process via data-driven stochastic models, this approach captures the devices’ variability, enabling rapid
prototyping, off-device training, and informed network design. Noise-aware training significantly improves transferability to hardware,
outperforming deterministic models in tasks such as smart prosthetic gesture prediction, while also requiring fewer experimental
measurements than alternative methods. This work highlights how the noisy nature of spintronic systems can be harnessed as a

valuable asset for unconventional computing.

Index Terms—Physical Neural Networks, Neuromorphic Computing, Spintronics.

I. INTRODUCTION

PINTRONIC devices hold significant promise as physical
S substrates for neuromorphic computing, thanks to their
non-volatile and non-linear behaviour, with potential for low-
energy control [1], [2]. When interconnected into physical
neural networks (PNNs), these devices can exhibit complex
emergent behaviours that go beyond the principles of reservoir
computing, offering potential for richer computational capa-
bilities directly within the hardware—an approach especially
relevant for edge computing tasks.

In conventional artificial neural networks, the connection
weights between neurons are optimised by directly calculating
the error gradient via backpropagation. In physical systems,
however, measuring gradients directly is often inefficient or
impractical due to a lack of accurate models, the presence of
noise, variability, and device-specific limitations. As a result,
training is commonly performed using alternative methods that
estimate gradients indirectly—often by simulating the device’s
behaviour in software while grounding the training methodolo-
gies in experimental data wherever feasible. Examples include
Physics-Aware Training (PAT) [3] which uses a digital twin of
the physical system to compute approximate gradients, but so
far it has primarily been demonstrated on static, feed-forward
tasks such as image classification.

Notably, many physical systems naturally exhibit temporal
dynamics, which may be particularly advantageous for solving
tasks such as signal transformation, time-series forecasting, or
classification of long-term dependencies, but these capabilities
remain largely under-explored in current techniques. In this
work, we present an approach that extends the PAT method-
ology to address such tasks while crucially accounting for

the stochastic variability in device responses, enabling robust
learning and deployment.

II. NOISE-AWARE TRAINING OF PHYSICAL NEURAL
NETWORKS

In physical systems their inherent stochasticity and noise
can be detrimental, especially when the connection weights
are trained off-device. To avoid this ’simulation-reality gap’,
we present an approach based around the creation of stochastic
digital twins that are trained to model the device responses
and provide a analogue for training off-device using powerful
gradient-based approaches. This approach leverages advanced
machine learning models based on stochastic differential equa-
tions (SDEs) [4] to create device responses that mimic exper-
imental measurements with similar noise distributions. This
allows for off-device training using backpropagation-through-
time (BPTT) to learn the interconnection weights between
devices to effectively solve a temporal task. Since the off-
device training observes realistic noisy device responses, the
learning process is able to account for this and create a more
robust solution. This means when the interconnection weights
are transferred to the real devices for testing, there is minimal
drop in performance. An overview of this process if shown in
Fig. 1 for a PNN comprised of nanomagnetic ring array.

III. RESULTS

The first stage of this approach involves training models that
replicate the responses of target nanomagnetic systems. In this
work, we use neural stochastic differential equations (SDEs)
[4], which employ a small deep neural network to learn func-
tions for both the deterministic and stochastic time derivatives.
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Fig. 1. Offline training loop for physical neural networks. First, a stochastic
digital twin based on a neural-SDE is trained on individual spintronic
devices to allow offline training using backpropagation-through-time. The
interconnection weights are then trained in simulation using realistic responses
generated by the model. Finally, the optimised weights are transferred to the
experimental system for inference.

This method was applied to two candidate spintronic nanode-
vices: a nanomagnetic ring array (NRA) [5] and artificial spin
vortex ice (ASVI) [6], both of which have previously been
investigated for neuromorphic computing. Figure 2(a) shows
the model’s predicted device response for the NRA device
under a given driving magnetic field. Repetitions of the same
field sequence produce different trajectories due to device
stochasticity, and our trained model successfully captures this
behaviour. This approach yields a noisy output that reflects the
inherent variability of the physical system and may assist in
identifying parameter regimes during the optimisation process
that avoid large noise fluctuations.

An example of this is shown in Fig. 2(b). The task uses
the chaotic Mackey-Glass time series as a benchmark for
regression performance, requiring the system to forecast five
steps ahead—a standard challenge in neuromorphic spintronic
systems [7]. In this result, we train a three-layer neural network
using the device models in simulation. The optimised connec-
tion weights are then transferred to the experimental system,
where a single device is time-multiplexed to emulate multiple
devices. In this case, we observe a mean squared error ap-
proximately an order of magnitude lower than existing results
in the literature [7]. Furthermore, we apply this methodology
to a temporal classification task based on handwritten digits,
where a two-layer PNN achieves comparable improvements.
In both cases, incorporating stochastic effects is crucial for the
successful transfer of weights to the physical network.

In summary, we have proposed a framework for training
physical neural networks composed of spintronic devices using
stochastic models. These models provide noisy predictions
of device dynamics under input signals, enabling simulated
optimisation of the connectivity that can then be transferred
to the physical system with minimal loss of accuracy. This
approach is general and can be applied across a range of
neuromorphic systems.
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Fig. 2. Results of a) training a neural-SDE to predict the dynamics of
a nanomagnetic ring array response, and b) testing of the physical neural
network to forward predict the Mackey-Glass task.
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