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Spintronic nano-devices hold significant promise for energy-efficient neuromorphic computing, thanks to their non-volatility,
efficient control methods, and complex non-linear dynamics. However, their inherent noise and stochasticity can often hinder
performance and necessitate off-chip training. This talk introduces a framework for constructing dynamical physical neural networks
(PNNs) from spintronic nano-devices, specifically for temporal tasks, using differentiable digital twins. By incorporating noise
directly into the training process via data-driven stochastic models, this approach captures the devices’ variability, enabling rapid
prototyping, off-device training, and informed network design. Noise-aware training significantly improves transferability to hardware,
outperforming deterministic models in tasks such as smart prosthetic gesture prediction, while also requiring fewer experimental
measurements than alternative methods. This work highlights how the noisy nature of spintronic systems can be harnessed as a
valuable asset for unconventional computing.

Index Terms—Physical Neural Networks, Neuromorphic Computing, Spintronics.

I. INTRODUCTION

S
PINTRONIC devices hold significant promise as physical

substrates for neuromorphic computing, thanks to their

non-volatile and non-linear behaviour, with potential for low-

energy control [1], [2]. When interconnected into physical

neural networks (PNNs), these devices can exhibit complex

emergent behaviours that go beyond the principles of reservoir

computing, offering potential for richer computational capa-

bilities directly within the hardware—an approach especially

relevant for edge computing tasks.

In conventional artificial neural networks, the connection

weights between neurons are optimised by directly calculating

the error gradient via backpropagation. In physical systems,

however, measuring gradients directly is often inefficient or

impractical due to a lack of accurate models, the presence of

noise, variability, and device-specific limitations. As a result,

training is commonly performed using alternative methods that

estimate gradients indirectly—often by simulating the device’s

behaviour in software while grounding the training methodolo-

gies in experimental data wherever feasible. Examples include

Physics-Aware Training (PAT) [3] which uses a digital twin of

the physical system to compute approximate gradients, but so

far it has primarily been demonstrated on static, feed-forward

tasks such as image classification.

Notably, many physical systems naturally exhibit temporal

dynamics, which may be particularly advantageous for solving

tasks such as signal transformation, time-series forecasting, or

classification of long-term dependencies, but these capabilities

remain largely under-explored in current techniques. In this

work, we present an approach that extends the PAT method-

ology to address such tasks while crucially accounting for

the stochastic variability in device responses, enabling robust

learning and deployment.

II. NOISE-AWARE TRAINING OF PHYSICAL NEURAL

NETWORKS

In physical systems their inherent stochasticity and noise

can be detrimental, especially when the connection weights

are trained off-device. To avoid this ’simulation-reality gap’,

we present an approach based around the creation of stochastic

digital twins that are trained to model the device responses

and provide a analogue for training off-device using powerful

gradient-based approaches. This approach leverages advanced

machine learning models based on stochastic differential equa-

tions (SDEs) [4] to create device responses that mimic exper-

imental measurements with similar noise distributions. This

allows for off-device training using backpropagation-through-

time (BPTT) to learn the interconnection weights between

devices to effectively solve a temporal task. Since the off-

device training observes realistic noisy device responses, the

learning process is able to account for this and create a more

robust solution. This means when the interconnection weights

are transferred to the real devices for testing, there is minimal

drop in performance. An overview of this process if shown in

Fig. 1 for a PNN comprised of nanomagnetic ring array.

III. RESULTS

The first stage of this approach involves training models that

replicate the responses of target nanomagnetic systems. In this

work, we use neural stochastic differential equations (SDEs)

[4], which employ a small deep neural network to learn func-

tions for both the deterministic and stochastic time derivatives.




