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We study low-density parity-check (LDPC) coding and iterative decoding methods for shingled magnetic recording (SMR) in ultra-

high-density hard disk drives (HDDs).  Previously, we applied a neural network to evaluate the log-likelihood ratios (LLRs) related to 

row operations in the sum-product (SP) decoder for LDPC code. Then, we updated the LLR considering the influence of noise depending 

on the recording pattern by providing the LLRs for the decoding target and its adjacent bits to the neural network in SP decoding. 

Furthermore, we explored the optimal parameters to update the LLRs by applying the genetic algorithm (GA). In this study, to explore 

more optimal update parameters, we propose the fitness to enhance the accuracy of selecting the LLR to be updated and the number of 

update targets. Then, we aim to improve the performance of SP decoding based on the GA results. As a result, applying the proposed 

fitness to GA remains in high selection accuracy and increases the number of updating targets in SP decoding. Also, it achieves error-

free performance with fewer iterations of turbo equalization compared to the conventional fitness. 

 
Index Terms— Genetic algorithm (GA), low-density parity-check (LDPC) code, neural network, shingled magnetic recording (SMR), 

sum-product (SP) decoding. 

 

I. INTRODUCTION 

N recent years, the explosive increase in data volume has 

required even higher-density hard disk drives (HDDs). 

Therefore, we are focusing on the shingled magnetic recording 

(SMR) [1], which enhances perpendicular magnetic recording 

(PMR), and developing signal processing methods. We studied 

the performance improvement of low-density parity-check 

(LDPC) coding and iterative decoding methods in SMR [2]. In 

the SMR, due to narrow tracks, signal processing methods are 

required to reduce the influence of inter-track interference (ITI) 

and signal-dependent noise like transition jitter. We have 

achieved the reduction of the effects of ITI by applying a two-

dimensional finite impulse response (TD-FIR) filter [3]. Also, 

to consider the influence of signal-dependent noise, we 

proposed the sum-product (SP) decoder in which a neural 

network evaluates the log-likelihood ratio (LLR) related to row 

operations using the LLRs of the decoding target bit and its 

adjacent bits and updates the LLR based on the neural network 

outputs [4]. Furthermore, we showed that a genetic algorithm 

(GA) is useful to explore updating parameters such as the 

thresholds and weights in the neural network.  

In this study, to explore more optimal update parameters, we 

propose the fitness to enhance the selection accuracy of the LLR 

to be updated and the number of update targets. Then, we aim 

to improve the performance of SP decoding based on the GA 

results. 

II. READ/WRITE SYSTEM 

Figure 1 shows the block diagram of the SMR read/write 

(R/W) system with the LDPC coding and iterative decoding. 

The system assumes the areal recording density of 4 Tbit/inch2. 

The R/W consists of the granular media and heads with R/W 

sensitivity function shown in [5]. In addition, the system noise 

defined by signal-to-noise ratio (SNR) is added at the reading 

point as assuming the electrical noise due to the head amplifier 

and read head, and is defined by SNR𝑆 = 20 log10(𝐴/𝜎𝑠) [dB], 

where 𝐴  is the positive saturation level of the waveform 

reproduced from an isolated magnetic transition and 𝜎𝑠 is the 

root-mean-square (RMS) value of the system noise in the 

bandwidth of the the channel bit rate 𝑓𝑐. The turbo equalization 

works between an a posteriori probability (APP) decoder and 

an SP decoder iteratively, where 𝑖𝑠𝑝  stands for the maximum 

number of iterations in the SP decoder, and 𝑖𝑔𝑙𝑜𝑏𝑎𝑙   stands for 

the turbo equalization. Then, the bit error rate (BER) is obtained 

by comparing the input sequence with the output sequence.  

III. SIMPLIFICATION OF NEURAL NETWORK BY HGA  

The SP decoding performs based on a parity check matrix 

and consists of row operations, parity checks, iterative decoding 

checks, column operations, extrinsic value operations, and 

posterior value operations. In this study, we employ an LDPC 

code defined by the parity check matrix with a code length of 

4,096 bytes, a column weight of 3, and a row weight of 30, so 

the SP decoder calculates 3 LLR sequences. Similar to [4], we 

focus on ln 𝛾𝑘
𝑛 , the LLR related to the row operation. 𝛾𝑘

𝑛 

denotes the transition probability from the previous point to the 

current point on the trellis diagram [6].  Figure 2 shows the 

relationship between the parity check matrix and the neural 

network configuration. Here, for simplicity, a case is illustrated 

in which the code length is 12, the column weight is 3, and the 
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Fig. 1   The block diagram of SMR R/W system with the LDPC 

coding and iterative decoding. 



row weight of 4. The neural network calculates the reliability of 

ln 𝛾𝑘
𝑛  using the ln 𝛾𝑘−1

𝑛 , ln 𝛾𝑘
𝑛 , and ln 𝛾𝑘+1

𝑛 . Furthermore, we 

apply the following parameters 𝑇𝐻𝛾𝑚 and 𝑊𝛾𝑚 (𝑚 = 0 to 3) for 

updating ln 𝛾𝑛 according to decoding patterns provided the hard 

decision of reliability of ln 𝛾𝑘
𝑛. Here, 𝑚 is the decoding pattern 

number. The decoding patterns in the cases of 𝑚 = 0, 1, 2, and 

3 correspond to “000” or “111”, “001” or “110”, “011” or “100”, 

and “010” or “101”, respectively. When the reliability, ln 𝛾𝑘
𝑛 is 

greater than 𝑇𝐻𝛾𝑚 or smaller than (1 − 𝑇𝐻𝛾𝑚), it is multiplied 

by 𝑊𝛾𝑚. In the proposed GA, the fitness of the 𝑙-th individual 

on the 𝛿-th generation is defined by𝑓𝛿𝑙 = −log10(𝑁𝑡𝑒
𝛿𝑙 𝑁𝑡

𝛿𝑙⁄ ) −

𝐶𝛿𝑙log10(1 − 𝑁𝑡
𝛿𝑙 𝑁𝑎𝑙𝑙

𝛿𝑙⁄ ) . 𝑁𝑡
𝛿𝑙  and 𝑁𝑡𝑒

𝛿𝑙  are the number of 

updated targets and the number of update errors, 

respectively. 𝑁𝑎𝑙𝑙
𝛿𝑙  is the total number of LLRs in row 

operations. 𝐶𝛿𝑙  is the coefficient that determines the degree 
to which the number of updates is reflected. We arrange 

𝑇𝐻𝛾𝑚, 𝑊𝛾𝑚, and 𝐶𝛿𝑙 in one dimension as one chromosome and 

perform the selection, crossover, and mutation [4]. However, 

the individuals with the highest fitness are left by applying the 

elitist preserving selection. We also employ the GA to 

efficiently explore the optimal weights to enhance the LLRs in 

column operations and extrinsic information [7].  

IV. PERFORMANCE EVALUATION AND CONCLUSION 

Now, we compare the performance of the best individuals 

obtained by the GA. Figure 3 shows the rate of increase in 

fitness relative to the first generation. Figures 4 and 5 show the 

selection accuracy of the LLR to be updated and the number of 

updating targets for generations, respectively. We set 𝑖𝑠𝑝= 20, 

𝑖𝑔𝑙𝑜𝑏𝑎𝑙  = 20, and SNR𝑆 = 21.0 dB. The mark of the red circle 

indicates the case of the proposed fitness in this study. The mark 

of the black diamond indicates the case of conventional fitness 

in [4]. From Fig. 3, the rate of increase in the proposed fitness 

is greater than the conventional one after the 6th generation. 

From Figs. 4 and 5, the update accuracy of the proposed fitness 

is slightly lower than the conventional one, but the overall 

selection accuracy remains high. On the other hand, the number 

of updating targets in the proposed fitness remains higher than 

that in the conventional one after the 6th generation. Figure 6 

shows the BER performance for 𝑖𝑔𝑙𝑜𝑏𝑎𝑙  . We set 𝑖𝑠𝑝 = 20 and 

SNR𝑆 = 21.0  dB. The marks are the same as the previous 

figures. From Fig. 6, the proposed fitness achieves error-free 

performance at fewer 𝑖𝑔𝑙𝑜𝑏𝑎𝑙   compared to the conventional 

fitness. From the above, when we employ the GA, setting the 

fitness to enhance the selection accuracy of the LLR to be 

updated and the number of updating targets is useful for 

improving SP decoding performance.  
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Fig. 2 Relationship between the parity check matrix and the neural network configuration.               Fig. 3  Rate of increase in fitness. 

                           
Fig. 4   Selection accuracy of the LLR to be updated.      Fig. 5   Number of updating targets.          Fig. 6   BER performance for 𝑖𝑔𝑙𝑜𝑏𝑎𝑙. 


