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Magnetic skyrmions possess a unique topological protection property, making them highly promising candidates as information
carriers in advanced recording and memory technologies. However, these carriers can experience deformation when subjected to
high current densities, potentially disrupting stable data transmission. In this study, we investigate skyrmion deformation across
various magnetic systems, including ferromagnetic (FM), ferrimagnetic (FiM), and antiferromagnetic (AFM) systems, to assess their
viability in memory applications. Through micromagnetic simulations and theoretical analysis, we focus on AFM skyrmions, which
show the least susceptibility to deformation. Our analysis involves deriving a canting term from the Thiele equation, highlighting a
critical factor that accounts for the reduced deformation observed in AFM systems. This insight underscores the superior stability of
AFM skyrmions, positioning them as an optimal choice for skyrmion-based memory devices. The findings suggest that AFM systems
can enhance the reliability and efficiency of skyrmion-driven information storage and transmission, advancing the fundamentals of

recording and memory technologies.
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I. INTRODUCTION
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The magnetic skyrmion presents a transformative potential
for advanced recording and memory applications, such as
racetrack memory devices, [1]-[5] transistor-like devices, [6],
[7] and neuromorphic computing systems. [6] Key attributes
of skyrmions that make them suitable for these applications
include their topological stability, [8]-[11] nanoscale dimen-
sions, [8], [12]-[14] and the ability to be manipulated by lower
current densities compared to domain walls. [15]-[17]

Several control mechanisms are available for skyrmions,
including spin current, [18], [19] magnetic field gradients,
[20] spin waves, [21] and temperature variations. [22] Among
these, current-driven manipulation is prevalent due to its high
efficiency and technological compatibility.

In ferromagnetic (FM) systems, skyrmions tend to deform
and disintegrate under high current densities, [1], [12], [15],
[23] limiting their effectiveness in memory devices. Anti-
ferromagnetic (AFM) systems offer promising alternatives,
characterized by weak stray fields [24], [25] and terahertz
spin dynamics, [26], [27] which can mitigate skyrmion de-
formation. [28]-[33] A schematic illustrating AFM skyrmion
deformation is presented in Fig. 1(a). The commensurate spins
in AFM eliminate skyrmion Hall effect (SKHE), [34], [35]
which leads to the deflection of the skyrmion’s trajectory
and a higher risk of boundary annihilation. We use Mumax3
[36], [37] to simulate the FM, FiM, and AFM systems. The
simulation results indicate that increasing the applied current
density causes a skyrmion to gradually deform from a circular
shape to an elliptical shape, expanding until it ultimately
breaks down, as shown in Fig. 1(b). Our simulations reveal that
AFM skyrmions possess larger stiffness, meaning that they are
more resistant to current-induced deformation.

This study investigates skyrmion deformation across FM,
FiM, and AFM systems using micromagnetic simulations,
highlighting transitions from strong to negligible Magnus
forces. Our findings reveal that AFM skyrmions exhibit min-
imal deformation. Theoretically, we examine skyrmion defor-
mation through force balance analysis, identifying magnetic
canting as a crucial factor enhancing AFM skyrmion stability.
We quantify skyrmion deformation in terms of stress, size,
shape, and orientation, [28], [29], [31], [38] comparing AFM
and FM skyrmions. Our numerical simulations closely align
with analytical solutions, underscoring AFM systems’ poten-
tial in revolutionizing recording and memory technologies.
And we could use the § term to define the skyrmion deforma-
tion:
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where 8¢ = TaaMsi/2K~, refers to the AFM domain
canting far from the skyrmion, v is the moving speed of
skyrmion caused by the current. Normally the relation between
skyrmion radius and domain wall width is R > w, and under
such condition § can be approximated as 6 = (A/2Dw)dg - P.
On the contrary, the canting in FM skyrmion is given by
drm = —vMg/2D~. Comparing the canting between AFM
and FM systems provides a clearer insight into why the
deformation in AFM is considerably smaller:
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where dAFM max <€ OFM,max as the damping o < 1.
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Fig. 1. (a) Schematic structure of the AFM skyrmion deformation. (b) The
skyrmion deformation under different applied current densities in different
systems. The skyrmion breaks down at 60 GA/m?2 and 150 GA/m? in the
FM and FiM system respectively, but it still remains stable at 200 GA /m?
in the AFM system.
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